
www.manaraa.com

Comput Econ (2007) 30:19–40
DOI 10.1007/s10614-007-9084-4

Reproducible research in computational economics:
guidelines, integrated approaches, and open source
software

Giovanni Baiocchi

Received: 26 December 2005 / Accepted: 31 January 2007 / Published online: 22 March 2007
© Springer Science+Business Media B.V. 2007

Abstract Traditionally, computer and software applications have been used
by economists to off-load otherwise complex or tedious tasks onto technology,
freeing up time and intellect to address other, intellectually more rewarding,
aspects of research. On the negative side, this increasing dependence on compu-
ters has resulted in research that has become increasingly difficult to replicate.
In this paper, we propose some basic standards to improve the production and
reporting of computational results in economics for the purpose of accuracy
and reproducibility. In particular, we make recommendations on four aspects
of the process: computational practice, published reporting, supporting docu-
mentation, and visualization. Also, we reflect on current developments in the
practice of computing and visualization, such as integrated dynamic electro-
nic documents, distributed computing systems, open source software, and their
potential usefulness in making computational and empirical research in econo-
mics more easily reproducible.

Keywords Economic methodology · Econometric software · Other computer
software

JEL classification B4 · C87 · C88

1 Introduction

Econometrics and other traditionally empirically oriented economic models
such as input–output analysis are inherently computational. More recently, the

G. Baiocchi (B)
Department of Economics and Finance, University of Durham, Durham DH1 3HY, UK
e-mail: giovanni.baiocchi@durham.ac.uk

www.manaraa.com

20 G. Baiocchi

use of ever more powerful computers and the development of increasingly so-
phisticated software applications has allowed economists to explore economic
models with less restrictive assumptions, estimate and test richer behavioral
models, experiment with different complex methodologies, compare different
estimation methods, etc. All these approaches have become part of the cross-
disciplinary subject we now refer to as computational economics. In general
terms, the goal of computational economics is to advance the subjects of eco-
nomics, mainly through the analysis of mathematical economic models by the
application of advanced computing techniques. To appreciate the wide range of
economic issues were computational methods have been brought to bear, one
just needs to glance at the table of content of issues of this Journal, the Journal
of Applied Econometrics (JAE), Journal of Economic Dynamics and Control, or
at the papers collected in books, such as, Varian (1996), Amman, Kendrick, and
Rust (1996), and Judd and Tesfatsion (2006). Many of these applications rely
rather heavily on computing.1 Increasingly often, economists use computers,
not only for computations on data and model simulations, but also for simple,
mechanical operations such as searching for information, collecting and storing
data, changing the format of data, validating data, post-processing output from
statistical applications, writing reports, handling tedious and complex algebraic
manipulations, collaborating with other researchers, and in disseminating the
final results. The use of computers has also benefited learning and research by
suggesting conjectures and enriching our understanding of abstract economic
and econometric concepts by means of examples and visualizations.

On the negative side, this increasing dependence of economists on compu-
ters has resulted in research that has become increasingly difficult to replicate.
Implementation details of computations in economics are left out of traditio-
nal printed publication. Reproducibility relies on a plethora of implementation
details that are difficult to communicate through conventional printed publi-
cations. As Dewald, Thursby, and Anderson (1986) pointed out, this lack of
information can result in months of effort by researchers trying to replicate a
study yielding inconclusive results regarding the validity of the original study.
Program written in specialized languages such as GAUSS are often not easily
portable between different platforms and versions of the program. Programs
written in conventional programming languages such as FORTRAN or C++
also depend on implementation details including the vendor, version of the com-
piler, and the specific platform on which they run. All these factors can amount
to insurmountable obstacles in the replication of computational-based results
in economics, as extensively reported by Dewald et al. (1986). For instance,
Dewald et al. (1986) report that they had to abandon attempts to reproduce

1 We could say that these methods are computationally intensive, however this expression is rather
fluid as yesterday’s computationally intensive methods become today’s standard approaches. As an
example, Leontief (1966) recounts that in 1939 to solve a system of 42 equations in 42 unknown, in
what was the first effort to analyze a large economics model through computers, required several
months of programming and 56 hours of computing on the Harvard Mark II computer, one of
the most powerful computers available at the time. Today the same calculations can be done in a
fraction of a second on a standard PC after comparatively very little programming effort.

www.manaraa.com

Reproducible research in computational economics 21

results from a large macroeconometric model because of difficulties in
transferring programs and data across computer systems. McCullough and
Renfro (1999), in a survey of GARCH estimation procedure implemented
in various packages, found that often important information that affects com-
puted results, such as parameter initialization, was not available. Buckheit and
Donoho (1995) pointed out that in the field of computational experiments re-
searchers often cannot reproduce their own work, even only a few months
after its completion, that research students have difficulties in presenting their
problems to their academic advisers, and that researchers cannot reproduce
computational results of other researchers and other published work. There is
substantial evidence that analogous problems occur also in economics (see, e.g.,
Dewald et al., 1986).

Computational and empirical results in economics require independent veri-
fication in order to contribute to the advancement of the subject of economics.
An important step in that direction is that published computational results
should be reproducible by other researchers. Ideally, reproducibility implies
that identical computational results should be obtainable in a short amount of
time, without requiring expensive computational resources, proprietary data,
licensed software, and any application-specific knowledge. Of course, insisting
on “bit-by-bit” reproducibility of computational results in economics is not
always practical and the definition must be interpreted in the light of the speci-
fic context of application.2 In applied work, it is quite frequent that a particular
commercial software, dataset, or expensive equipment makes research results
difficult to reproduce.3 In practice, obtaining qualitatively similar results might
be sufficient to claim that a computational result has been reproduced.

There has been an increasing interest in making research in empirical eco-
nomics reproducible since the alarm raised by Dewald et al. (1986), in their
Journal of Money, Credit, and Banking (JMCB) project, in which they attemp-
ted and failed to replicate most empirical results published or submitted to
the same journal. Based on their recommendation several journal introduced
publicly available Internet archives and required the submission of data and
programs from the authors of the empirical papers submitted. In a more recent
investigation, Vinod (2001) found that ∼70 per cent of articles from presti-
gious economic journals were not reproducible. He attributed this problem to
sloppy record keeping, inaccurate software, and the lack of maintenance of
software and data, in particular, after publication. McCullough, McGeary and
Harrison (2006) take stock of 23 years experience of the JMCB data and code
archive. They convincingly argue that, though most empirical work could still
not be reproduced, the requirement of a data and code archive should be adop-
ted by more journals and that stricter rules that ensure compliance from the

2 Gentle (2003) talks of Monte Carlo computation being strictly reproducible if the software and
the seeds used for the random number generators are preserved.
3 Stokes (2004) discusses the potential advantages of using different software to solve the same
problem.

www.manaraa.com

22 G. Baiocchi

author should be introduced. Based on the experience, they provide guidelines
to facilitated the reproduction of empirical research in economics.

If progress in making empirical research reproducible has been slow, progress
computational computational economics has been even slower. Of the three
journals that specialize in computational economics and econometrics mentio-
ned above only the JAE has a mandatory archive, but requires the submission of
the data only. The Journal of Economic Dynamics and Control upon acceptance
of a paper offers the authors the option to submit data and computer code used
in the paper. This implies that in even in principle most computational results
cannot be verified. This state of affairs is regrettable and every effort should
be made to correct it. Besides allowing for verification, the reproducibility of
computational economics research would have many other important benefits.
Research in economics is often a process of iterative refinement. Reproducible
computational results are easier to improve upon. Supervision can also benefit
from reproducibility at least in two ways. First, by using computational results
that are easily reproducible and modifiable to solve other economic problems,
research students can learn and get started with their own research. Second,
reproducible results can be better monitored for quality.4

In this paper, we propose some basic standards to improve the production and
reporting of computational results in economics for the purpose of accuracy and
reproducibility. In particular, we will make recommendations on four aspects
of the process: computational practice, published reporting, supporting docu-
mentation, and visualization. Also, we reflect on current developments in the
practice of computing and visualization, such as integrated dynamic electronic
documents, distributed computing systems, open source software, and their
potential usefulness in making computational and empirical research in eco-
nomics more easily reproducible. In particular, we will highlight the potential
role of these innovative computational developments in organizing computa-
tional research and in mediating researcher’s interaction with each other, Ph.D.
students, and journal editors, by streamlining operations such as replication,
validation, and supporting students’ participation in the research process. We
also show how open source software, software whose source code is made freely
available to the public, enabling anyone to copy, modify and redistribute the
source, is naturally conducive to reproducibility. In particular, we illustrate how
scripts using only open source applications, can be used to collect commands
that can reproduce the computational results of a project in its entirety from
data collection and preparation to analysis and dissemination.

In Sect. 2, we introduce guidelines to improve the reproducibility of com-
putational results in economics. In Sect. 3, we consider several innovative
approaches that have been recently proposed to preserve all steps of a compu-
tation in an electronic medium and their potential application to computational
economics in order to facilitate reproducibility. In Sect. 4, we introduce open
source software and its uses in economics. Section 5 discusses the advantages
and disadvantaged of open source software. In Sect. 6, we illustrate how open

4 For an extensive review of the benefits of reproducibility see McCullough et al. (2006).

www.manaraa.com

Reproducible research in computational economics 23

source software can be used to facilitate the reproduction of computational and
empirical results in Economics. In particular, we illustrate how scripts using only
open source applications, can be used to collect commands that can reproduce
the computational results of a project in its entirety from data collection and
preparation to analysis and dissemination. Section 7 concludes.

2 Guidelines for reproducibility in computational economics

In this section, we propose some basic standards to improve the production and
reporting of computational results in economics for the purpose of accuracy and
reproducibility. Results based on computational methods in economics should
be reported as carefully as any other computation results from other disci-
plines. McCullough et al. (2006) provided guidelines for reporting reproducible
research in empirical economics. In the field of statistics, Hoaglin and
Andrews (1975) supplied a useful list of items that should accompany any
statistical computation-based result. No equivalent guidelines are available for
obtaining and reporting computational results in economics. To be of use to
economists, it is important that guidelines are tailored to the specific problems
of computational economics and that they take into account the recent expe-
rience in making empirical research in economics and other disciplines reprodu-
cible (see, e.g., Anderson, Greene, McCullough and Vinod, 2005, McCullough,
McGeary and Harrison, 2006). However, given the wide scope of computatio-
nal economics, recommendation must be interpreted in the light of the specific
context of application. In this section, we make recommendations on four
aspects of the process we think require special attention: computational practice,
published reporting, supporting documentation, and visualization.

2.1 Computational practice

Computational practice in economics should conform to best practice adop-
ted in other scientific disciplines relying heavily on computation to further
the development of their respective fields. The algorithms used in computa-
tional economic should be state of the art and fully adequate for the needs
of the study. It is important to avoid reinventing the wheel when writing soft-
ware code. Whenever possible, preference should be given to well-known and
thoroughly tested algorithms available in the public domain as subroutines code,
libraries, packages, software applications, and systems. Computational routines
that are not in the public domain or that have not being tested before, should
be thoroughly tested before use.

It is often the case that computational economists have to craft their own
code. In fact, the algorithm and its implementation often constitute the main
contribution of a computational economic paper. To facilitate reproducibility,
code should be easy to read and to maintain. As an example, Kernighan and
Plauger (1978) and Kernighan and Pike (1999) provided basic elements of
programming style including a guide for variable names and commenting styles.

www.manaraa.com

24 G. Baiocchi

2.2 Published reporting

Theoretical results in economics often rely on deep properties of the real num-
ber system. Computer numbers, referred to as “floating-point numbers” and
often denoted by F, are a finite subset of the reals, R. Operations in F do
not follow the familiar properties of the corresponding operations in R (see,
e.g., Ueberhuber, 1997).5 Computer numbers with their associated arithme-
tic are merely a convenient approximation of the real number system. Eco-
nomists engaging heavily in computation hope that, by accounting for more
complex relationships into their models, they can reduce the inevitable gap
between economic models and reality. By doing so however, they introduce
errors of a different nature. Computational results can be at best approxima-
tions to the desired problem solution. More often, computational results are the
solution of a qualitatively different problem from the original. Because of this,
every effort should be made to reassure the reader that best practice has been
applied in obtaining the results. In principle, any information useful to assess the
accuracy of the results, to help with their interpretation, and to facilitate their
reproduction, should be supplied with the study. In particular, any published
result should include details on:

• the estimated accuracy of the computed results,
• the extent of agreement with known theoretical results and certified bench-

marks, including, whenever possible, an analysis of the discrepancies,
• details on any measure employed to speed up computations such as discreti-

zation, truncation, convergence criterion, etc.,6

• the numerical algorithms used (rootfinding, minimization, etc.), which
should be fully adequate for the needs of the study, convergence proper-
ties, error bounds, starting values selection strategy, etc.,

• robustness checks, whenever possible, with respect to the choice of alternative
computational algorithms,

• the programming languages or software applications used, and vendor, ver-
sion, serial number, alternative platforms on which they run, etc.,

• the computer used, including details on the CPU, and operating system.7

All the items listed above provide information to help assess the accuracy of
the computer-based results and facilitate their reproduction.

5 Lack of basic knowledge of computer numbers and algebra can lead to a considerable waste
of time and embarrassment. I was once asked by a colleague why, in the calculation a numerical

derivative of a function, f (x+h)−f (x)
h , the accuracy seemed to decrease with decreasing h. On another

occasion, I was told that in order to achieve very accurate computational results, the convergence
criteria of a numerical algorithm for a computational economics study was set to less than 10−308.
6 Often these measures convert a computationally intractable problem into a tractable one (see,
e.g., Judd and Tesfatsion, 2006).
7 It is worth remembering that in the fall of 1994, a serious design flaw was discovered in the
Intel Pentium processor, commonly referred to as the “Pentium floating-point-division bug” or
“Pentium bug” in short. As a consequence, certain floating-point division operations performed by
the Pentium processor produced incorrect results.

www.manaraa.com

Reproducible research in computational economics 25

2.3 Code, data, and other supporting documentation

Authors should submit code and data plus any other supporting documentation
that can facilitate replication and help in the assessment of the quality of the
results. Data and code archives have been used with limited success in empirical
economics so far. McCullough et al. (2006), in their review of the JMCB data
and code archive, found that even when code and data were provided, it proved
often difficult or impossible to replicate empirical results. For instance, they
found that in many cases data was provided in a different format from the one
required as an input to the code supplied, data or subroutines files were missing,
the code was poorly organized, and so on. Among other things, they recom-
mend the use of data dictionary, were variable and data sources are described,
and the use of readme files listing all the files needed for replication with a
brief description of each. For the reproduction of computational econometrics
results Koenker (2006) proposes that all the code and software environment
together with relevant documentation necessary to reproduce tables and
figures should be made available through the Internet. We propose that
authors of computational studies should provide the following items:

• any data used in the study in its original form and in the form required by the
computational code,

• all code used to produce the computational results presented in tables and
figures,

• output from a computer run that makes use of the code and data supplied
and contains the computational results included in the paper, and

• a readme file list all the replication files with a brief description of each.

The code should written following basic programming style guidelines. In
particular, it should be easy to read, modular, and adequately documented.
Code and data in its original form should consist of textual (ASCII) data which
can be readily transferred from one system to another. The code should be
well organized and easy to run, all files should be listed and documented. We
recommend that a data dictionary be included in the replication files, as part of
a readme file. We recommend that the readme file list all the replication files
with a brief description of each.

2.4 Visualization

Traditionally, results in empirical economics are presented in the form of tables.
The advantage of tables is that information can be clearly organized and they
show exact numerical values. However, tables can only be practically used
only when the computational results can be represented or summarized as a
small finite set of numbers. Often, to manage large numbers of results resulting
from changes in experimental conditions, response surfaces. More often, com-
putational results can be communicated accurately and clearly only by means
of graphs. Because of the nature of the computed results visualization has
becomes an essential part of computational economics. However no attention

www.manaraa.com

26 G. Baiocchi

has been given to best practices in the visualization of computational results.
Visualization should display data accurately and clearly, and should help to
highlight important characteristics. A well designed graph should be able to
facilitate exploration, communication, as well as calculation and processing of
the computational results.

Some methods of visualization, such as kernel density estimation used to
present monte carlo results in econometrics, are themselves computational
methods and depend on a plethora of implementation details that can be built-
in the software application, fixed as default settings, or determined by the
researcher. Given the importance of visualization in computational economics,
the same standard for obtaining the computational result should be applied to
the production of figures.

Visualization methods can draw on the relevant literature in the fields of
scientific visualization, psychology, and computer graphics. Several graphics
parameter can affect the presentation of computational results. Excellent
reference for guidelines on how to produce good quality graphs. In particu-
lar, Cleveland (1993, 1994) or Tufte (2001) should serve as a useful guides. In
view of the above considerations, we feel that the computational results that are
displayed graphically should be accompanied by detailed information on any
interpolating, smoothing, or other algorithm used for the display of the results.

3 Integrated approaches to reproducibility of computations

Traditionally, the process of performing economic computations is being done
separately from the preparation of documents and reports in which they are
presented. The results from economic computation are often inserted into Word
or LATEX documents manually and in ad hoc ways. Papers are then traditionally
presented in a printed format. The documents are not easily reproducible.
Printed papers are static and “closed” in that the reader cannot update the
contents of the document directly or by introducing new or additional data.
Even electronic documents, mostly in pdf format, disseminated through the
internet, are qualitatively no different from the printed version.

Several approaches have been recently proposed to preserve all steps of a
computation in an electronic medium in order to facilitate reproducibility. Two
main approaches have emerged recently. Scripting Languages and dynamic
interactive documents

3.1 Scripting languages

The use of scripting languages,8 that can connect diverse software tools and
applications to accomplish a sequence of computations and data processing, has
been suggested in the computing literature. Schwab, Karrenbach and Claerbout

8 Also known, especially in the past, as batch languages, glue languages, or job control languages.

www.manaraa.com

Reproducible research in computational economics 27

(2000) of the Stanford Exploration Project (SEP) group,9 developed the concept
of reproducible electronic document based on the GNU make utility. Programs
written for the make utility are known as makefiles. A makefile contains all the
commands needed to build a software application and is a standard UNIX utility
for software maintenance. In Sect. 6, we show how a complete computational
project with all the data and commands needed for its reproduction can be
compactly preserved and effectively communicated through a Perl script.10

3.2 Dynamic documents and environments

Recent advancements in technology and computer science have permitted the
development of software tools that can integrate computational processes into
both the document preparation and display process (see, e.g., Gentleman, 2005;
Gentleman & Lang, 2004; Leisch, 2002; Sawitzki, 1999; Sawitzki, 2005). These
electronic documents are dynamic, in that computations presented as figures
and tables, can be recalculated each time the document is viewed, and interac-
tive, in that computations included in the document can be manipulated and
controlled directly by the reader. The limitations of traditional printed paper as
a support for computational results, are self-evident. Dynamic, interactive elec-
tronic documents can be implemented either through a software component
approach or through rich interfaced programming environments.11

A software component approach integrates regular text documents with
spreadsheets, pictures, digital videos, digital audio, and other features. Examples
include dynamic web pages and word processing software. For instance, HTML
allows the inclusion of Applets and other plug-ins to provide dynamic, inter-
active, facilities. Another popular example among economists of such an inte-
grated environment is Scientific WorkPlace, which is a word processing system,
designed especially for the preparation of technical documents, based on LATEX
with support for computer algebra systems.

Another approach makes use of rich interfaced programming environment.
As an illustration, Gentleman (2004) developed the concept of compendium, a
dynamic document, containing text, code, and software, capable of displaying
and recreating computations on demand. The prototype used by Gentleman
(2004) to exemplify the concept is based almost entirely on GNUR. This
approach could provide reproducible calculations and a formal way for integra-
ting economic computations directly into documents. The general approach is
based on the concept literate programming originally proposed by Knuth (1983,
1984, 1992). These electronic documents are also interactive and extensible in
the sense that they allow the reader to modify the processing options, input new
data, or insert additional algorithms and visualizations. There are other more
ad hoc suggestions on how to make research reproducible based on commercial

9 The homepage of the group is located at http://sep.stanford.edu/.
10 For more details see Baiocchi (2003, 2004).
11 Although this distinction can be blurred in practice.

www.manaraa.com

28 G. Baiocchi

software applications. Buckheit and Donoho (1995) developed a reproducible
research environment in the form of a Matlab library. Koenker (1996) pro-
posed an approach to computational experimentation in econometrics based
on the commercial application S-plus. Varian (1992, 1996) collects examples of
dynamic electronic documents of computational economics implemented in the
Mathematica programming environment.

Distributed computing, a generalization of the component approach, could
allow a seamless sharing of data, code, and computational environments.
Although the idea is not fully developed yet, it has a considerable appeal for
the purpose of reproducibility of computational results.

4 Open source software in economics

Economists typically require a variety of data processing, communication, and
other software tools. Software applications used by economists for research and
teaching purposes include many proprietary econometric and statistical applica-
tions (e.g., PcGive, SAS, SPSS, EVievs, TSP), symbolic processing applications
(e.g., Maple and MATHEMATICA), and various simulation and optimization
packages (e.g., GAMS). Commercial software applications cannot be freely
copied and distributed making replication of computational-based results
arduous for researchers without expensive computational resources at their
disposal.

As more and more complex computational methods are being developed
and used in economics, there is a growing concern about relying on commercial
proprietary/closed software for academic research. Computational results that
largely depend on a black box, such as Mathematica, whose details on algo-
rithms implemented are trade secrets held by a commercial company, though
replicable under the same conditions, are much harder to validate. Open source
does not suffer from these liabilities, as, in principle, everything about an open
source program is open to scrutiny. The closed nature of most commercial soft-
ware affects also reproducibility. By keeping their software source code hidden,
commercial software vendors, make it impractical to modify a software appli-
cation they develop, and demand fees for its use and improvement. Users have
to rely on the company to implement new features and fix bugs. There is a
wide consensus among practitioner econometricians that commercial software
producers are slow to respond to request of extensions and bug fixes by users.
In his review of GAUSS, Vinod (2000) pointed out the failure of GAUSS to
fix numerical accuracy problems that have been exposed by specialized litera-
ture. Problems discovered by Knüsel (1995) were still present, and more were
found. Some still persist at the moment of writing as we will see in subsequent
sections. Some of the consequences of software inaccuracies are presented in
McCullough and Vinod (1999a).

Open source software, whose source code is made freely available to the
public, enabling anyone to copy, modify and redistribute the source, is natu-
rally conducive to reproducibility and verification. Table 1 presents the current

www.manaraa.com

Reproducible research in computational economics 29

Table 1 Legal status of software applications useful to Economists reviewed by the JAE

Software useful for economists reviewed by the JAE

Free/open source Proprietary/closed

Public domain Netlib repositorya Freewareb BACC 14(6), 677–689
(www.netlib.org)

EasyReg 13 (2), 203–207
Open source Scilab 16(4), 553–559

GCC (GNU C++) ViSta 17(4), 405–414
11 (2), 199–202 Commercial GAUSS 15(2), 211–220
CYGWIN Tools EViews 15(1), 107–110
15 (3), 331–341 LIMDEP 14 (2), 191–202
GNU/Linux MATLAB 12 (6), 735–744
14 (4), 443–452 MicroFit 13 (1), 77–89
GNU Octave Ox c 12 (1), 77–89
15 (2000) (5), 531–542 PcGive 13 (4), 411–420
GNU R RATS 12 (2), 181–190
14, (3), 319–329 Shazam 14 (2), 191-102
GRETL SORITEC 17 (1), 85–90
18, (1), 105–110 S-plus 12 (1), 77–89
Perl Stata 16 (5), 637–646
18, (3), 371–378 TSP 12 (4), 445–453
mikTEX/teTEX XploRe 13 (6), 673–679
16, (1), 81–92 LISREL 19 (1), 135–141

Maple 10(3), 329–337

a Web site directing to mostly public domain Fortran and Java code for matrix computations
including solving linear equations, eigenvalue problems and linear least-squares problems
b Software that can be downloaded free of charge
c A less “user friendly” non-Windows version is available with no charge for academic uses

legal status of software useful to economists reviewed by the JAE. The table
also report the volume, issue, and page numbers were the review appears. An
important distinction to keep in mind is the one between open source and
freeware/shareware software. With open source software, the source code is
bundled with the software and is free for everyone to inspect and acquire, with
freeware/shareware the software is “free” to be distributed, but the source code
is withheld from the public. Open source is made available under a variety of
license types. The GNU General Public License (GPL), the GNU Lesser Gene-
ral Public License (LGPL), the Mozilla Public License (MPL), the BSD License,
the Apache Software License, the MIT License, the Artistic License, and the
Perl license are among the best known. For a an explanation of these different
Open Source license flavors, consult St. Laurent (2004). The table clearly shows
how most free software deemed useful for economists falls under the Open
Source GPL agreement and includes a completely functional UNIX operating
system (GNU Linux), programming languages and developing tools (GCC, and
CYGWIN), powerful typesetting system (MiKTEX/TeTEX), and a high-level,
cross-platform programming language with network and object-oriented pro-
gramming support (Perl). Software applications that can compete with commer-
cial applications traditionally used in Economics, include a high-level language

www.manaraa.com

30 G. Baiocchi

for matrix and numerical computations (Octave), which is comparable in terms
of functionality to specialized applications such as GAUSS and MATLAB, a
sophisticated programming environment for statistical computing and graphics
based on the S programming language (GNU R), with functionality analogous
to applications such as SAS, SPSS, STATA, or S-plus, and a complete econome-
tric package (GRETL), still under development but already with features that
makes it comparable to applications such as PcGive, EViews, and MicroFit.

GNU (sometimes pronounced “guh-NEW”) is an acronym for “GNU’s Not
Unix”. It is the name of a project by the Free Software Foundation (FSF) whose
purpose is to promote the free exchange of software. The GNU project was star-
ted in order to develop a complete Unix-compatible operating system as well as
an extensive set of software tools, all to be made freely available to the general
public. The project has grown to include programs that were developed by many
other people for their own purposes, which shared the same underlying philo-
sophy of software freedom. For more details on the organization, see Stallman
(1985). GNU’s success as a catalyst in the production of free software is mostly
attributable to the introduction of a form of software licensing, known as the
GNU General Public License, or GPL, which encourages the free distribution
of software.12 In the next few paragraphs we briefly review some of the most
successful OS project useful to economists.

GNU/Linux is a Unix-like computer operating system combined with libra-
ries and tools from other GNU projects. Linux distributions incorporate large
number of software applications with the core system. It was originally deve-
loped by Linus Torvalds for Intel microprocessors in 1991 but has since then
considerably expanded to support a variety of computer architectures. A review
of GNU/Linux from an economist’s point of view can be found in MacKinnon
(1999).

R,13 an open-source programming environment for data analysis and gra-
phics, has in only a decade grown to become a de-facto standard for statistical
analysis against which many popular commercial programs may be measured.
R’s source code was initially written by Ross Ihaka and Robert Gentleman (see
Ihaka and Gentleman, 1996) at the Department of Statistics of the University
of Auckland in Auckland, New Zealand. Since the mid 1990s there has been a
core group (the “R Core Team”) who can modify the R source code archive. R
provides cutting-edge statistical and visualization methods. For an introduction
on how R can be used in Econometrics see, e.g., Racine and Hyndman (2002).

12 The crucial difference between GNU software and software placed in the public domain, without
copyright, is that the GNU GPL makes sure that anyone who redistributes the software, with or
without changes, must pass along the freedom to make further copies and changes.
13 R is available from the WWW’s Comprehensive R Archive Network (CRAN) located at
http://cran.r-project.org/, where source code, additional libraries, documentation, and
links to binaries distributions of R are available for various platforms, including Win32, Mac, and
Unix/Linux.

www.manaraa.com

Reproducible research in computational economics 31

GRETL, an acronym for GNU Regression, Econometrics and Time-series
Library,14 is a cross-platform software package for econometric analysis, writ-
ten in the C programming language. GRETL is the first complete econome-
tric software package to be released under the GNU software license. The
software consists of a shared library, a command-line client program, and a
graphical client program. It comes with many sample data files from Greene
(2000) and Ramanathan (2002), which are immediately accessible from the
menu. It supports several least-squares-based statistical estimators (including
two-stage least squares and panel data methods), time series models (inclu-
ding the Cochrane-Orcutt procedure and VARs), and some maximum like-
lihood methods (logit and probit). It also has built-in commands for several
econometric tests (including the Chow, Hausman, and Dickey-Fuller tests). It
calls gnuplot to generate graphs and is capable of generating output in LATEX
format. GRETL has been written by Allin Cottrell based on ESL (Econo-
metrics Software Library) code written by Ramu Ramanathan of the Univer-
sity of California, San Diego. It can be obtained from the world wide web at
http://gretl.sourceforge.net/, where the source package and binary
distributions running on GNU/Linux and Microsoft Windows in the form of a
self-extracting executable can be downloaded. Particularly noteworthy is the
fact that the program is also distributed on CDs that accompany two popu-
lar econometrics textbooks, Ramanathan (2002) and Wooldridge (2002). These
books use GRETL extensively for their applied examples making GRETL
a useful tool for practicing and teaching econometrics. An example of how
GRETL can be used to analyze economic data can be found in Baiocchi and
Distaso (2003).

GNU Octave is a high-level matrix-based language, primarily intended for
numerical computations, available for different platforms at the following URL:
http://www.octave.org/, that is, mostly compatible with MATLAB. It
provides a convenient command line interface for solving common numerical
linear algebra problems, including the roots of non-linear equations, integrating
ordinary functions, manipulating polynomials, and integrating ordinary diffe-
rential equations. It may also be used as a batch-oriented language. It is easily
extensible and customizable via user-defined functions written in Octave’s own
language, or using dynamically loaded modules written in C++, C, Fortran,
or other languages. Octave was originally written by James B. Rawlings of
the University of Wisconsin-Madison and John G. Ekerdt of the University of
Texas. Octave is free software distributed under the terms of the GNU GPL as
published by the FSF. For a survey on how Octave can be used in economics
see Eddelbuettel (2000).

GNU Emacs, a program written by Richard Stallman of the FSF, can serve
as an integrated environment in which to run applications useful to economists.
There is an Emacs package called ESS, an acronym for Emacs Speaks Statistics,

14 There is also an obvious reference to the classic fairy tale “Hansel and Gretel,” in which Gretel is
the mature and resourceful girl whose ingenuity saves her sibling’s life from an evil witch who, after
kidnapping them by means of gingerbread and candies, intends to fatten and eventually eat him.

www.manaraa.com

32 G. Baiocchi

(see, Rossini et al., 2004) which provides a standard interface between statistical
and econometric programs and statistical processes. It is intended to provide
assistance for interactive statistical and econometrics programming and data
analysis. Languages supported include: S dialects (S-Plus, and R), LispStat
dialects (XLisp-Stat, ViSta), SAS, Stata, and SPSS dialect (SPSS, PSPP).

A complete computing environment that includes all the above mentioned
applications and many more is Quantian Eddelbuettel (2003). Quantian is a
Linux-based system that is a directly bootable and self-configuring from a single
cdrom/dvdrom. Quantian comprises Knoppix (Knopper, 2003) from which it
takes its base system software, along with automatic hardware detection and
configuration, and scientific software such as the above mentioned applications
and many more including, general purpose computer algebra systems such as
Axiom, Maxima, PARI/GP, etc., numerical matrix oriented applications such
as Scilab, Numeric Python, Euler, and PDL, optimization software such as
lp-solve, GNU Scientific Library, programmable editors such as GNU Emacs
with support for econometric and statistical applications including Stata, SAS,
S-PLUS, and R, and so on.

One of the features that make many open source projects so successful is their
modular nature. The functionality of modular application can be easily extended
to cover more specialized areas of application. Modular application make it
particularly easy to create, install, update, and access the optional code and data,
with accompanying documentation, within the main application. Functions,
data, and documentation provided by extra modules are easily made available
to the user without the need of any application-specific knowledge typically
with just one statement (\usepackage{...}, library(...), use ...).
This allows code written to satisfy the need of a particular researcher to be easily
reused and modified by others. For instance, modules (in Perl), libraries (in R),
macro packages (LATEX) useful to economists are continuously added. Modules
are made available in the main Web site were the software is distributed. So
called package managers (for instance the MiKTEX Package Manager and the
Perl Package Manager) allow the installation or update on demand of additional
packages. Other applications, such as R, allow installation and updating to occur
making appropriate selections from the main menu bar.

In the next section, we review some of the main advantages and disadvantages
of open source software.

5 Advantages and disadvantages of open source software

Commercial software vendors rely on the law of contracts and intellectual
property to protect their softwares source code from being used by resear-
chers for other purposes. Typically, the software application is “purchased”
through a licensee/licensor contract. Because the source code is kept secret,
software is usually delivered to licensees in object code or executable form,
i.e., in machine-only readable form. It is possible to identify several, actual and
potential, advantages of using OS software for researchers, students, and aca-
demic institutions.

www.manaraa.com

Reproducible research in computational economics 33

Typically, open source software can be obtained at the cost of the media (CDs
or diskettes) or network bandwidth (for distribution via the world wide web).
Commercial packages used by economist can be quite expensive, especially if
upgrading and licensing occurs frequently. Cost considerations can discourage
the adoption of a commercial package by institutions from developing countries,
and also by resource constrained universities in more developed countries.
Moreover, newer versions that add new features can make previous versions
rapidly obsolete (it is of small consolation if, after a long wait, you manage to
obtain code that “Requires version x.x or greater, and library y”). Analogous
problems arise when modification or extended functionality is required. Asking
for features to be included is a long and tedious process. Some well known
software producer are slow to respond, even in fixing serious bugs identified
and reported on specialized journals. “Toolboxes,” “modules,” “packages,” etc.,
can be extremely expensive, sometimes more than the core software itself.
GNU’s copy-left license guarantees the freedom to improve the program, and
release the improvements to the public, so that the whole scientific community
can benefit.

Uncertainties about the future development of a software application can
also prevent its adoption. Under the GNU license, the software (and the option
for support and development) will also be available if the software producer no
longer exists.

Open source software is reputed to have a high degree of reliability.
Serious errors have been found in some econometric and statistical packages,
(see, e.g., Knüsel, 1995;McCullough, 1998, 1999; McCullough and Vinod, 1999b).
Vendors of proprietary software rarely describe the algorithms used to imple-
ment econometric and statistical procedures, nor provide information about
their reliability. This is a serious omission that makes the use of “black box”
packages less attractive for academic research. Algorithm used, their imple-
mentation benefit form being open source. To ensure the highest standard of
quality and degree of confidence in the results obtained, software should be
subject to peer review as any other aspect of research and based on openly
published and freely available algorithms and source code.

Open source software can promote efficiency and learning. Applied econo-
metricians will sometimes have the necessity to engage in the process of crafting
their own programs. Free software allows to obtain the source code and study
it. The writing of code or the adapting of existing own to one’s needs is thus
facilitated. Free Software should avoids “re-inventing the wheel.” The GNU
license guarantees the freedom to redistribute copies, modified or not, so that
the whole scientific community can benefit.

Disadvantages of opens source software include abandoned code and code
“forking.” For an example of software used in statistics and econometrics that
has de facto been abandoned see the discussion on Xlisp-Stat in de Leeuw
(2005). This is a problem that affects commercial software as well. With open
source the problem is mitigated by the fact that the GNU license guarantees
that the software will still be available and, at least in principle modifiable, even
when the main project ceases to exist. Forking, as expected, is a problem that

www.manaraa.com

34 G. Baiocchi

seems to occur more frequently with open source. Forking of a project occurs
when a developer takes code from a project and develops it independently of
the original project. An example of forking is the Gnu-Emacs/XEmacs split.
Forking is generally considered harmful in terms of wasted resources, but it can
also create some beneficial competition as the EGCS (Experimental/Enhanced
GNU Compiler System) which was a fork from GCC (GNU Compiler Collec-
tion) which was eventually reincorporated in the official GCC project. For a
description of how GCC and other Unix-like software tools are used in econo-
mics see Racine (2000).

6 Reproducible computations using open source software

Economists’ increasing dependence on computers has resulted in research that
has become increasingly difficult to replicate. Implementation details of com-
putations in Economics are left out of traditional printed publication. Resear-
chers and students find it hard to reproduce published result, making progress
in Economics hard to establish and validate. Moreover, researchers are finding
it difficult to reproduce their own computational results only a few months after
a project has been abandoned (see, e.g., Dewald et al., 1986). In this section,
we want to highlight the potential role of open source software in organizing
computational-based research and in mediating researcher’s interaction with
each other, Ph.D. students, and journal editors, by streamlining operations such
as replication, mediating the actions and interactions of researchers, and sup-
porting students’ participation in the research process that might otherwise be
too difficult to manage.

For instance, an empirical application in Economics consist in essence of com-
putation on data. For an econometrics project to be reproducible, besides data
and code, a prerequisite is that adequate documentation on the dataset used,
its sources, the processing it has been subjected to, as well as documentation on
software and programming code used for its analysis, should be made available.

Many of these activities can be automated using scripting languages as seen
in Sect. 3. Modern scripting languages are among the main achievement of the
open source movement (consider the success of Perl, Phyton, and PHP, to name
just a few). They are innovative software of which proprietary equivalents are
practically non-existent. The success of the Web would not have been possible
without their development. For further examples of successful open source
applications see Lerner and Triole (2002). In the next paragraphs, we show how
these languages can encourage innovation in the way computational results can
be implemented in a way that makes them easily reproducible. Perl will be used
for this demonstration.

Perl, an acronym for Practical Extraction and Report Language,15 is a cross-
platform, high-level, open source programming language, originally designed

15 Although many Perl programmer like to think it stands for “Pathologically Eclectic Rubbish
Lister.”

www.manaraa.com

Reproducible research in computational economics 35

and implemented by Larry Wall. Perl can be downloaded from the WWW’s
Comprehensive Perl Archive Network (CPAN) located athttp://www.cpan.
org/, where the source package, modules, documentation, and links to bina-
ries distributions of Perl are available for various platforms, including Win32,
Mac, and Unix/Linux.16 Perl is free, and is released under either the GNU GPL
license or the less restrictive Artistic License.17

The Perl language originally incorporated and extended some of the best
features of the C programming language, and from software tools such as sed,
awk, grep, and the Unix shell. Perl has considerably evolved since its beginning
and now features a full range of network and object-oriented capabilities. Perl’s
process, file, and text manipulation facilities make it particularly well-suited for
a wide range of tasks that economists face regularly such as data collection
and processing, including data transformation, validation and cleaning, and the
merging of several data files. It can also be useful in simplifying other more
labor intensive and sophisticated tasks such as the conversion of econometric
code from one language to another (say GAUSS to Matlab and vice versa),
regression output processing and typesetting, preparation of bibliography files
(converting ISI/BIDS to bib files), publishing of math-intensive documents on
Web pages (converting LATEX to HTML), the distribution of computing and
storage tasks across several nodes of a computer cluster, etc.

Perl’s extensive network programming support, allows to collect in a short
script, not only details about data processing and the code needed for the
analysis, but also, for instance, the commands that retrieve the data itself and
the software used for its analysis. A complete computational project with all the
data and commands needed for its reproduction can be compactly preserved
and effectively communicated through a Perl script. The following example
illustrates this point. The example requires only R and LATEX to be reproduced.

Consider estimating the demand for clean air model using the well-known
Boston housing data (see Belsey, Kuh and Welsch, 1980, for example). Note
that in the dataset available at STATLIB each record spans over two contiguous
lines.

0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30
396.90 4.98 24.00
0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80
396.90 9.14 21.60
…

16 We used ActivePerl release 5.8.0.806, which is based on Perl Version 5.8, the standard Win32
release available at the time of writing the present paper. The code has also being tested on platforms
running the Solaris and the Linux operating system. The hardware used in this Chapter was a Dual
Intel Pentium IV (Prestonia) Xeon Processors 3.06 GHz with HT Technology with 4 GB of RAM
running on Microsoft Windows XP/2002 Professional (Win32 × 86) 5.01.2600 (Service Pack 2).
17 For details on the Perl license consult the GNU Project’s home page at http://
www.gnu.org/.

www.manaraa.com

36 G. Baiocchi

The script downloads the Boston data from STATLIB, cleans and prepares
the dataset, uses R18 to estimate the coefficients of the model, saves the results
in a file, and finally prints the results in LATEX format.

downloads Boston dataset from STATLIB
use LWP::Simple;
getstore("http://lib.stat.cmu.edu/datasets/boston","boston.raw");

corrects for record spanning two lines
open(IN, "boston.raw");
open(OUT, ">boston.asc");
do { $line = <IN> } until $. == 22

or eof; # Skips the first 22 lines of header
while ($line = <IN>) {

chomp $line;
$line .= <IN>; # joins two lines
print OUT $line;

}
close(OUT);

sends data to R for regression analysis
open(RPROG, "| c:/rw1081/bin/Rterm.exe --no-restore --no-save");
select(RPROG);
print << ’CODE’;
bost<-read.table("boston.asc",header=F)
names(bost)<- c("CRIM", "ZN", "INDUS",

"CHAS", "NOX", "RM",
"AGE", "DIS", "RAD",
"TAX", "PTRAT", "B",
"LSTAT", "MEDV")

attach(bost)
boston.fit <- lm(log(MEDV) ˜ CRIM + ZN + INDUS +

CHAS + I(NOXˆ2) + I(RMˆ2) + AGE + log(DIS) +
log(RAD) + TAX + PTRAT + B + log(LSTAT))

sum <- summary(boston.fit)$coe[,1:2]
write.table(sum,"boston.out",quote = FALSE)
q()
CODE
close(RPROG);

creates LaTeX table with regression results
open(TABLE, "boston.out");
open(TEX, ">table.tex");
$prec = 3; # sets number of decimals
$width = 9; # sets the width of the field
do { <TABLE> } until $. == 1 or eof; # Skips the first line of
header
while (<TABLE>) {

chomp;
@line = split;
printf TEX "%11s & %${width}.${prec}g & %${width}.${prec}g\\\\
\n", $line[0],
$line[1], $line[2];

}

18 We used R release 2.0.0, the standard Win32 release available at the time of writing the present
paper.

www.manaraa.com

Reproducible research in computational economics 37

Table 2 OLS estimates of the demand for clean air model

Variable Coefficient Standard
estimate error

(Intercept) 4.56 0.154
CRIM −0.0119 0.00124
ZN 8.02e − 005 0.000506
INDUS 0.00024 0.00236
CHAS 0.0914 0.0332
I(NOX2) −0.638 0.113
I(RM2) 0.00633 0.00131
AGE 9.07e − 005 0.000526
log(DIS) −0.191 0.0334
log(RAD) 0.0957 0.0191
TAX −0.00042 0.000123
PTRATIO −0.0311 0.00501
B 0.000364 0.000103
log(LSTAT) −0.371 0.025

close(TABLE);
close(TEX);

The TEX file can be included in a document using the command
\input{table}. The result, after compilation in LATEX is the typeset Table 2.

These results are easily reproducible, as they can be generated in a matter
of seconds and do not require proprietary data or licensed software. For more
information on Perl and examples on how it can be used in economics to
facilitate the reproduction of computational results, see Baiocchi (2003, 2004).

7 Conclusions

Journals that specialize in computational economics and econometrics do not
require authors to deposit data and code that can reproduce the computatio-
nal results of their papers. This implies that in even in principle most com-
putational results cannot be verified. In this paper, we proposed some basic
standards to improve the production and reporting of computational results in
economics for the purpose of accuracy and reproducibility. In particular, we
made recommendations on four aspects of the process: computational prac-
tice, published reporting, supporting documentation, and visualization. Also,
we reflected on current developments in the practice of computing and visuali-
zation, such as integrated dynamic electronic documents, distributed computing
systems, open source software, and their potential usefulness in making compu-
tational and empirical research in economics more easily reproducible. In this
paper, we have also illustrated the advantages and disadvantages of using open
source software applications in Economics. We found that the open source soft-
ware development model can ensure that many software applications produced
under this model, because of their availability, quality, reliability, and innova-
tions, can benefit reproducibility of computational results in economics.

www.manaraa.com

38 G. Baiocchi

References

Amman, H., Kendrick, D., & Rust, J. (Eds.). (1996). Handbook of computational economics (Vol. 1).
Amsterdam, The Netherlands: Elsevier North-Holland.

Anderson, R. G., Greene, W. H., McCullough, B., & Vinod, H. D. (2005). The role of data and
program code archives in the future of economic research. Working Paper No. 2005-014B, FRB
of St. Louis.

Baiocchi, G. (2003). Managing econometric projects using Perl. Journal of Applied Econometrics,
18(3), 371–378.

Baiocchi, G. (2004). Using Perl for statistics: Data processing and statistical computing. Journal of
Statistical Software, 11(1), 1–81.

Baiocchi, G., & Distaso, W. (2003). GRETL: Econometric software for the GNU generation. Journal
of Applied Econometrics, 18(1), 105–110.

Belsey, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics. New York: Wiley.
Buckheit, J. B., & Donoho, D. L. (1995). Wavelets and statistics, chapter Wavelab and Reproducible

Research (pp. 55–81). Berlin, New York: Springer.
Cleveland, W. S. (1994). The elements of graphing data. Summit, New Jersey: Hobart Press
Cleveland, W. S. (1993). Visualizing data. Summit, New Jersey: Hobart Press.
de Leeuw, J. (2005). On abandoning XLISP-STAT. Journal of Statistical Software, 13(7), 1–81.
Dewald, W. G., Thursby, J. G., & Anderson, R. G. (1986). Replication in empirical economics: The

journal of money, credit and banking project. American Economic Review, 76(4), 587–603.
Eddelbuettel, D. (2000). Econometrics with Octave. Journal of Applied Econometrics, 15(5), 531–

542.
Eddelbuettel, D. (2003). Quantian: A scientific computing environment. In Proceedings of the 3rd

international workshop on distributed statistical computing (DSC 2003) March 20–22, Vienna,
Austria, Vienna, Austria. Technische Universitt Wien.

Gentle, J. E. (2003). Random number generation and Monte Carlo methods (2nd ed.). New York:
Springer.

Gentleman, R. (2004). Some perspectives on statistical computing. Technical report, Department
of Biostatistics, Harvard School of Public Health, Boston, Massachusetts, USA.

Gentleman, R. (2005). Reproducible research: A bioinformatics case study. Statisti-
cal Applications in Genetics and Molecular Biology, 4(1), Article 2. Available at:
http://www.bepress.com/sagmb/vol4/iss1/art2.

Gentleman, R., & Lang, D. T. (2004).Statistical analyses and reproducible research. Bioconductor
Project Working Papers. Working Paper 2

Greene, W. (2000). Econometric analysis (4th ed.). New York: Prentice Hall.
Hoaglin, D. C., & Andrews, D. F. (1975). The reporting of computation-based results in statistics.

The American Statistician, 29(3), 122–126.
Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of

Computational and Graphical Statistics, 5, 299–314.
Judd, K., & Tesfatsion, L. (Eds.). (2006). Handbook of computational economics: Agent-based

computational economics (Vol. 2). Amsterdam, The Netherlands: Elsevier North-Holland.
Kernighan, B. W., & Pike, R. (1999). The practice of programming. Reading, MA: Addison-Wesley.
Kernighan, B. W., & Plauger, P. J. (1978). The elements of programming style (2nd ed.). New York,

NY: McGraw Hill.
Knopper, K. (2003). Knoppix. Available at http://www.knopper.net/knoppix/index-en.html.
Knüsel, L. (1995). On the accuracy of statistical distributions in GAUSS. Computational Statistics

and Data Analysis, 20, 699–702.
Knuth, D. E. (1983). Literate programming. Technical report STAN-CS-83-981, Stanford

University, Department of Computer Science.
Knuth, D. E. (1984). Literate programming. The Computer Journal, 27(2), 97–111.
Knuth, D. E. (1992). Literate programming. CSLI Lecture Notes Number 27. Stanford, CA, USA:

Stanford University Center for the Study of Language and Information.
Koenker, R. (1996). Reproducible econometric research. Technical report, Department of

Econometrics, University of Illinois, Urbana-Champaign, IL.

www.manaraa.com

Reproducible research in computational economics 39

Koenker, R. (2006). Reproducibility in econometrics research. Technical report, Department
of Econometrics, University of Illinois, Urbana-Champaign, IL. http://www.econ.uiuc.edu/∼
roger/repro.html.

Leisch, F. (2002). Dynamic generation of statistical reports using literate data analysis. In W. Härdle
(Ed.), Proceedings in computational statistics (pp. 575–580). Heidelberg, Germany: Physika
Verlag.

Leontief, W. W. (1966). Input-output economics. In W. W. Leontief (Ed.), Input-output economics
chapter 2 (pp. 13–29). New York: Oxford University Press.

Lerner, J., & Triole, J. (2002). The simple economics of open source. Journal of Industrial
Economics, 52, 197–234.

MacKinnon, J. G. (1999). The Linux operating system: Debian GNU/Linux. Journal of Applied
Econometrics, 14(4), 443–452.

McCullough, B. (1998). Assessing the reliability of statistical software: Part I. The American
Statistician, 52, 358–366.

McCullough, B. (1999). Assessing the reliability of statistical software: Part II. The American
Statistician, 53(1), 149–159.

McCullough, B., & Vinod, H. (1999a). The numerical reliability of econometric software. Journal
of Economic Literature, 37(2), 633–665.

McCullough, B., & Vinod, H. (1999b). The numerical reliability of econometric software. Journal
of Economic Literature, XXXVII, 633–665.

McCullough, B. D., McGeary, K. A., & Harrison, T. D. (2006). Lessons from the JMCB Archive.
Journal of Money, Credit, and Banking, 38(4), 1093–1107.

McCullough, B. D., & Renfro, C. G. (1999). Benchmarks and software standards: A case study of
GARCH procedures. Journal of Economic and Social Measurement, 25(2), 59–71.

Racine, J. (2000). The cygwin tools: a GNU toolkit for windows. Journal of Applied Econometrics,
15(3), 331–341.

Racine, J., & Hyndman, R. (2002). Using R to teach econometrics. Journal of Applied Econometrics,
17(2), 175–189.

Ramanathan, R. (2002). Introductory econometrics with applications (5th ed.). Orlando, Florida:
Harcourt College Publishers.

Rossini, A. J., Heiberger, R. M., Sparapani, R., Mächler, M., & Hornik, K.(2004). Emacs speaks
statistics: A multiplatform, multi-package development environment for statistical analysis.
Journal of Computational and Graphical Statistics, 13(1), 247–261.

Sawitzki, G. (1999). Software components and document integration for statistical computing. In
Proceedings ISI Helsinki 1999 (52nd session) Bulletin of the International Statistical Institute
Tome LVIII, Book 2, pp. 117–120.

Sawitzki, G. (2005). Keeping statistics alive in documents. Computational Statistics, 17(1), 65–88.
Schwab, M., Karrenbach, M., & Claerbout, J. (2000). Making scientific computations reproducible.

Computing in Science and Engineering, 2(6), 61–67.
St. Laurent, A. M. (2004). Understanding open source and free software licensing: A straightforward

guide to the complex world of licensing. Sebastopol, CA, USA: O’Reilly & Associates.
Stallman, R. (1985). The GNU manifesto. Dr. Dobb’s Journal of Software Tools, 10(3), 30–35.
Stokes, H. (2004). On the advantage of using two or more econometric software systems to solve

the same problem. Journal of Economic and Social Measurement, 29, 307–320.
Tufte, E. R. (2001). The visual display of quantitative information (2nd ed.). Cheshire, Connecticut:

Graphics Press.
Ueberhuber, C. W. (1997). Numerical computation: Methods, software, and analysis (Vol. 1). Berlin

Heidelberg, Germany: Springer.
Varian, H. R. (Ed.). (1992). Economic and financial modeling with mathematica. New York:

TELOS/Springer.
Varian, H. R. (Ed.). (1996). Computational economics: Economic and financial analysis with

mathematica. New York: TELOS/Springer.
Vinod, H. D. (2000). Review of GAUSS for windows, including its numerical accuracy. Journal of

Applied Econometrics, 14(2), 211–220.

www.manaraa.com

40 G. Baiocchi

Vinod, H. D. (2001). Care and feeding of reproducible econometrics. Journal of Econometrics,
100(1), 87–88.

Wooldridge, J. (2002). Introductory econometrics: A modern approach (2nd ed.). Mason, OH:
Thomson, South-Western.

www.manaraa.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Reproducible research in computational economics: guidelines, integrated approaches, and open source software
	Abstract
	Introduction
	Guidelines for reproducibility in computational economics
	Computational practice
	Published reporting
	Code, data, and other supporting documentation
	Visualization
	Integrated approaches to reproducibility of computations
	Scripting languages
	Dynamic documents and environments
	Open source software in economics
	Advantages and disadvantages of open source software
	Reproducible computations using open source software
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

